Search results

1 – 7 of 7
Article
Publication date: 1 November 2023

Yifan Pan, Lei Zhang, Dong Mei, Gangqiang Tang, Yujun Ji, Kangning Tan and Yanjie Wang

This study aims to present a type of metamorphic mechanism-based quadruped crawling robot. The trunk design of the robot has a metamorphic mechanism, which endows it with…

Abstract

Purpose

This study aims to present a type of metamorphic mechanism-based quadruped crawling robot. The trunk design of the robot has a metamorphic mechanism, which endows it with excellent crawling capability and adaptability in challenging environments.

Design/methodology/approach

The robot consists of a metamorphic trunk and four series-connected three-joint legs. First, the walking and steering strategy is planned through the stability and mechanics analysis. Then, the walking and steering performance is examined using virtual prototype technology, as well as the efficacy of the walking and turning strategy.

Findings

The metamorphic quadruped crawling robot has wider application due to its variable trunk configuration and excellent leg motion space. The robot can move in two modes (constant trunk and trunk configuration transformation, respectively, while walking and rotating), which exhibits outstanding stability and adaptability in the examination and verification of prototypes.

Originality/value

The design can enhance the capacity of the quadruped crawling robot to move across a complex environment. The virtual prototype technology verifies that the proposed walking and steering strategy has good maneuverability and stability, which considerably expands the application opportunity in the fields of complicated scene identification and investigation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2020

Yujun Wang, Qiang Li, Shuo Zhang, Xinhao Tang, Weiwei Xu and Zhenbo Wang

The loading mechanism of textures considering turbulence has not been fully covered. This paper aims to investigate the effect of turbulence on the textured loading capacity under…

Abstract

Purpose

The loading mechanism of textures considering turbulence has not been fully covered. This paper aims to investigate the effect of turbulence on the textured loading capacity under water lubrication and to analyze the causes of the turbulence effect.

Design/methodology/approach

Computational fluid dynamic models with different textured shapes are established after validation. The transition shear stress transport (SST) model, which is suitable for predicting the transition process of fluid from laminar state to turbulent state, is adopted in the present study. To illustrate the effect of turbulence, the loading capacity of textures predicted by transition SST model and laminar model is compared.

Findings

The loading capacity is higher after considering turbulence because more lubricant enters into textures and the flow rate of lubricant to textured outlet increases. There exists an optimal textured depth ratio and density for loading capacity and the change of flow state would not affect the optimal values. The degree of fluid blockage at textured outlet has a dominant influence on loading capacity. As the textured shape changes to triangle or ellipse from rectangle, the vortices at the textured bottom move forward and the blockage at a textured outlet is enhanced, which makes loading capacity improved under the action of blocking effect.

Originality/value

The enhancement of the blocking effect is found to be crucial to the improvement of textured loading capacity after considering turbulence. Present research provides references to understand the loading mechanism of textures under turbulent conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0149/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 June 2021

Pengyue Guo, Zhijing Zhang, Lingling Shi and Yujun Liu

The purpose of this study was to solve the problem of pose measurement of various parts for a precision assembly system.

Abstract

Purpose

The purpose of this study was to solve the problem of pose measurement of various parts for a precision assembly system.

Design/methodology/approach

A novel alignment method which can achieve high-precision pose measurement of microparts based on monocular microvision system was developed. To obtain the precise pose of parts, an area-based contour point set extraction algorithm and a point set registration algorithm were developed. First, the part positioning problem was transformed into a probability-based two-dimensional point set rigid registration problem. Then, a Gaussian mixture model was fitted to the template point set, and the contour point set is represented by hierarchical data. The maximum likelihood estimate and expectation-maximization algorithm were used to estimate the transformation parameters of the two point sets.

Findings

The method has been validated for accelerometer assembly on a customized assembly platform through experiments. The results reveal that the proposed method can complete letter-pedestal assembly and the swing piece-basal part assembly with a minimum gap of 10 µm. In addition, the experiments reveal that the proposed method has better robustness to noise and disturbance.

Originality/value

Owing to its good accuracy and robustness for the pose measurement of complex parts, this method can be easily deployed to assembly system.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 November 2021

Qiang Li, Qinglei Liu, Yujun Wang, Shuo Zhang, Yujing Du, Bin Li and Wei-Wei Xu

The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic…

Abstract

Purpose

The stringent requirements for environmental protection have induced the extensive applications of water-lubricated journal bearings in marine propulsion. The nonlinear dynamic analysis of multiple grooved water-lubricated bearings (MGWJBs) has not been fully covered so far in the literature. This study aims to conduct the nonlinear dynamic analysis of the instability for MGWJBs.

Design/methodology/approach

An attenuation rate interpolation method is proposed for the determination of the critical instability speed. Based on a structured mesh movement algorithm, the transient hydrodynamic force model of MGWJBs is set up. Furthermore, the parameters’ analysis of nonlinear instability for MGWJBs is conducted. The minimum water film thickness, side leakage, friction torque and power loss of friction are fully analyzed.

Findings

With the increase of speed, the journal orbits come across the steady state equilibrium motion, sub-harmonic motion and limit circle motion successively. At the limit circle motion stage, the orbits are much larger than that of steady state equilibrium and sub-harmonic motion. The critical instability speed increases when the spiral angle decreases or the groove angle increases. The minimum water film thickness peak is at the rotor speed of 4,000 r/min for the MGWJB with Sa = 0°. As rotor speed increases, the side leakage decreases slightly while the friction torque and the power loss of friction increase gradually.

Originality/value

Present research provides a beneficial reference for the dynamic mechanism analysis and design of MGWJBs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Dawit Zenebe Segu and Pyung Hwang

– The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance.

509

Abstract

Purpose

The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance.

Design/methodology/approach

The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface.

Findings

The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions.

Originality/value

This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 June 2019

Arif Abdullah, Mohd Fadzil Faisae Ab Rashid, S.G. Ponnambalam and Zakri Ghazalli

Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims…

Abstract

Purpose

Environmental problems in manufacturing industries are a global issue owing to severe lack fossil resources. In assembly sequence planning (ASP), the research effort mainly aims to improve profit and human-related factors, but it still lacks in the consideration of the environmental issue. This paper aims to present an energy-efficient model for the ASP problem.

Design/methodology/approach

The proposed model considered energy utilization during the assembly process, particularly idle energy utilization. The problem was then optimized using moth flame optimization (MFO) and compared with well-established algorithms such as genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). A computational test was conducted using five assembly problems ranging from 12 to 40 components.

Findings

The results of the computational experiments indicated that the proposed model was capable of generating an energy-efficient assembly sequence. At the same time, the results also showed that MFO consistently performed better in terms of the best and mean fitness, with acceptable computational time.

Originality/value

This paper proposed a new energy-efficient ASP model that can be a guideline to design assembly station. Furthermore, this is the first attempt to implement MFO for the ASP problem.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 3 September 2019

Shunsuke Managi, Jingyu Wang and Lulu Zhang

The purpose of this paper is to provide the extensive review on dynamic monitoring of forestry area in China.

1991

Abstract

Purpose

The purpose of this paper is to provide the extensive review on dynamic monitoring of forestry area in China.

Design/methodology/approach

Countermeasure and suggestions were proposed for three aspects including the establishment of data sets with unified standards, top-level design of monitoring and assessment and analysis models, and establishment of the decision support platform with multiple scenario simulation.

Findings

Finally, the authors proposed key research area in this field, i.e., improving the systematic and optimal forest management through integrating and improving the data, models and simulation platforms and coupling the data integration system, assessment system and decision support system.

Originality/value

The authors explored the limitation of dynamic monitoring and state of the art research on data accumulation, professional model development and the analytical platform.

Details

Forestry Economics Review, vol. 1 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

1 – 7 of 7